5 Commits

15 changed files with 794 additions and 421 deletions

View File

@@ -5,6 +5,13 @@ set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
# Optional: Enable function timing instrumentation via #define
# To enable timing, either:
# 1. Define SWEEPSTORE_ENABLE_TIMING=1 in your code before including timing.h
# 2. Pass -DSWEEPSTORE_ENABLE_TIMING=1 to compiler
# 3. Uncomment the line below:
add_compile_definitions(SWEEPSTORE_ENABLE_TIMING=1)
# Add include directories globally
include_directories(${CMAKE_SOURCE_DIR}/src/Public)
include_directories(${CMAKE_SOURCE_DIR}/src/Private)
@@ -21,10 +28,11 @@ add_executable(main
src/Private/sweepstore/concurrency.cpp
src/Public/sweepstore/utils/file_lock.h
src/Private/sweepstore/utils/file_lock.cpp
src/Private/sweepstore/utils/fd_pool.cpp
src/Public/sweepstore/utils/file_handle.h
src/Private/sweepstore/utils/file_handle.cpp
src/Public/sweepstore/header.h
src/Public/sweepstore/utils/timing.h
src/Private/sweepstore/utils/timing.cpp
src/Private/sweepstore/benchmark.cpp
)
@@ -43,3 +51,7 @@ if(UNIX AND NOT APPLE)
# Only link stdc++fs on Linux, not macOS
target_link_libraries(main PRIVATE stdc++fs)
endif()
if(WIN32)
target_link_libraries(main PRIVATE winmm)
endif()

View File

@@ -2,6 +2,8 @@
// Created by Benjamin Watt on 02/12/2025.
//
#define SWEEPSTORE_ENABLE_TIMING 1
#include "sweepstore/sweepstore.h"
#include <string>
@@ -13,34 +15,49 @@
#include <condition_variable>
#include <atomic>
#include <vector>
#include <memory>
#include <cstdlib>
#include "sweepstore/utils/helpers.h"
#include "sweepstore/utils/file_handle.h"
#include "sweepstore/structures.h"
#include "sweepstore/concurrency.h"
// ============================================================================
// BENCHMARK CONFIGURATION
// ============================================================================
const int SWEEPSTORE_CONCURRENT_WORKERS = 32; // Number of concurrent workers for Sweepstore
const int WORKER_THREAD_COUNT = 8; // Number of worker threads in the benchmark pool
const int BENCHMARK_ITERATIONS = 10; // Number of benchmark iterations
const int INITIAL_CONCURRENT_WORKERS = 1; // Starting number of concurrent operations (doubles each iteration)
const int ITERATION_DELAY_MS = 200; // Delay between iterations in milliseconds
const int INITIAL_SLEEP_MS = 1000; // Initial sleep before benchmark starts
// ============================================================================
int main() {
namespace fs = std::filesystem;
// Initialize timing output file
SweepstoreTiming::initOutputFile();
std::string filePath = "./example.bin";
Sweepstore sweepstore(filePath);
sweepstore.initialise(32);
// Use unique_ptr to control destruction timing
auto sweepstore = std::make_unique<Sweepstore>(filePath);
sweepstore->initialise(SWEEPSTORE_CONCURRENT_WORKERS);
preciseSleep(std::chrono::milliseconds(1000));
preciseSleep(std::chrono::milliseconds(INITIAL_SLEEP_MS));
std::vector<uint8_t> fileData = loadFile(filePath);
std::cout << binaryDump(fileData) << std::endl;
std::cout << "Concurrent Workers: " << sweepstore.getConcurrencyHeader()->readNumberOfWorkers() << std::endl;
std::cout << "Concurrent Workers: " << sweepstore->getConcurrencyHeader()->readNumberOfWorkers() << std::endl;
std::cout << "Stale Ticket Threshold: " << STALE_HEARTBEAT_THRESHOLD_MS << std::endl;
SweepstoreConcurrency::initialiseMasterAsync(filePath);
int iterations = 16;
int currentIteration = 0;
int concurrencyTest = 1;
int concurrencyTest = INITIAL_CONCURRENT_WORKERS;
// Worker pool infrastructure - created once and reused
std::queue<std::function<void()>> taskQueue;
@@ -50,16 +67,20 @@ int main() {
std::atomic<bool> shutdown{false};
std::atomic<int> completedJobs{0};
// Create 32 persistent worker threads BEFORE timing
// Create persistent worker threads BEFORE timing
std::vector<std::thread> workers;
for (int i = 0; i < 32; i++) {
for (int i = 0; i < WORKER_THREAD_COUNT; i++) {
workers.emplace_back([&]() {
while (!shutdown) {
std::function<void()> task;
{
std::unique_lock<std::mutex> lock(queueMutex);
queueCV.wait(lock, [&]{ return !taskQueue.empty() || shutdown; });
if (shutdown && taskQueue.empty()) return;
if (shutdown && taskQueue.empty()) {
// Flush timing data before thread exits
SweepstoreTiming::flushThreadData();
return;
}
if (!taskQueue.empty()) {
task = std::move(taskQueue.front());
taskQueue.pop();
@@ -70,12 +91,14 @@ int main() {
completionCV.notify_one();
}
}
// Flush timing data before thread exits
SweepstoreTiming::flushThreadData();
});
}
while (true) {
if (++currentIteration > iterations) {
if (++currentIteration > BENCHMARK_ITERATIONS) {
break;
}
@@ -86,7 +109,7 @@ int main() {
std::unique_lock<std::mutex> lock(queueMutex);
for (int i = 0; i < concurrencyTest; i++) {
taskQueue.push([i, &sweepstore, &completedJobs]() {
sweepstore["key_" + std::to_string(i)] = "value_" + std::to_string(i);
(*sweepstore)["key_" + std::to_string(i)] = "value_" + std::to_string(i);
++completedJobs;
});
}
@@ -105,9 +128,12 @@ int main() {
auto end = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
std::cout << "[" << currentIteration << "/" << iterations << "] Completed " << concurrencyTest << " operations in " << duration << " ms." << std::endl;
std::cout << "[" << currentIteration << "/" << BENCHMARK_ITERATIONS << "] Completed " << concurrencyTest << " operations in " << duration << " ms." << std::endl;
concurrencyTest *= 2;
// Wait between iterations
preciseSleep(std::chrono::milliseconds(ITERATION_DELAY_MS));
}
// Shutdown workers after all iterations
@@ -117,5 +143,18 @@ int main() {
worker.join();
}
return 0;
// Write timing data NOW while everything is still valid
std::cout << "Flushing timing data..." << std::endl;
std::cout.flush();
SweepstoreTiming::flushThreadData();
std::cout << "Finalizing trace file..." << std::endl;
std::cout.flush();
SweepstoreTiming::finalizeOutputFile();
std::cout << "Benchmark complete." << std::endl;
std::cout.flush();
// Exit immediately to avoid thread-local destructors conflicting with detached master thread
_Exit(0);
}

View File

@@ -11,6 +11,7 @@
#include "sweepstore/header.h"
#include "sweepstore/utils/helpers.h"
#include "sweepstore/utils/file_handle.h"
#include "sweepstore/utils/timing.h"
uint64_t getRandomOffset(uint64_t maxValue) {
@@ -30,17 +31,18 @@ int randomId() {
return (time ^ random) & 0x7FFFFFFF;
}
void SweepstoreConcurrency::spawnTicket(SweepstoreFileHandle* _file,
void SweepstoreConcurrency::spawnTicket(SweepstoreFileHandle* file,
const SweepstoreTicketOperation& operation,
const uint32_t keyHash,
const uint32_t targetSize,
const std::function<void()> onApproved,
std::string debugLabel
) {
SWEEPSTORE_TIME_FUNCTION();
// FileHandle now uses thread-local streams internally - no need to create new handle!
// Each thread automatically gets its own fstream from the shared file handle
SweepstoreFileHandle* file = new SweepstoreFileHandle(_file->getPath(), std::ios::in | std::ios::out | std::ios::binary);
// SweepstoreFileHandle* file = new SweepstoreFileHandle(_file->getPath(), std::ios::in | std::ios::out | std::ios::binary);
/*
Useful Functions
@@ -50,10 +52,13 @@ void SweepstoreConcurrency::spawnTicket(SweepstoreFileHandle* _file,
auto log = [&](const std::string &message) {
std::string prefix = !debugLabel.empty() ? "\033[38;5;208m[Ticket Spawner - " + debugLabel + "]:\033[0m " : "\033[38;5;208m[Ticket Spawner]:\033[0m ";
// debugPrint(prefix + message);
// std::cout << prefix << message << std::endl;
};
// Sleep with variance (additive only)
auto varySleep = [&](std::chrono::nanoseconds minSleepDuration, std::chrono::nanoseconds variance) {
// SWEEPSTORE_TIME_SCOPE("Varying Sleep");
if (variance.count() <= 0) {
preciseSleep(minSleepDuration);
} else {
@@ -66,10 +71,12 @@ void SweepstoreConcurrency::spawnTicket(SweepstoreFileHandle* _file,
// Exponential sleep
std::unordered_map<std::string, int> expSleepTracker = {};
auto expSleep = [&expSleepTracker](const std::string& label) {
SWEEPSTORE_TIME_SCOPE("Exponential Sleep");
int count = expSleepTracker[label]; // defaults to 0 if not found
int sleepTime = (1 << count); // Exponential backoff
sleepTime = std::max(1, std::min(sleepTime, 1000)); // Clamp between 1ms and 1000ms
preciseSleep(std::chrono::milliseconds(sleepTime));
// sleepTime = 1000;
preciseSleep(std::chrono::microseconds(sleepTime * 500));
expSleepTracker[label] = count + 1;
};
@@ -81,16 +88,17 @@ void SweepstoreConcurrency::spawnTicket(SweepstoreFileHandle* _file,
Ticket Acquisition
*/
auto acquireTicket = [&](uint32_t newIdentifier) -> SweepstoreWorkerTicket {
SWEEPSTORE_TIME_SCOPE("acquireTicket");
// Reduce the chance of race condition
varySleep(std::chrono::microseconds(500), std::chrono::microseconds(200));
uint32_t ticketIndex = -1u;
while (true) {
uint32_t concurrentWorkers = concurrencyHeader.readNumberOfWorkers();
while (true) {
for (uint32_t i = 0; i < concurrentWorkers; i++) {
SweepstoreWorkerTicket ticket = SweepstoreWorkerTicket(i, *file);
@@ -101,13 +109,19 @@ void SweepstoreConcurrency::spawnTicket(SweepstoreFileHandle* _file,
SweepstoreWorkerTicketSnapshot snapshot = ticket.snapshot();
int identifier = snapshot.identifier;
uint32_t identifier = snapshot.identifier;
bool identifier_unassigned = identifier == 0;
bool stale_heartbeat = millisecondsSinceEpoch32() - snapshot.workerHeartbeat > STALE_HEARTBEAT_THRESHOLD_MS;
bool is_free = snapshot.state == SweepstoreTicketState::FREE;
if (identifier_unassigned && stale_heartbeat && is_free) {
if ((identifier_unassigned && is_free) || stale_heartbeat) {
if (i >= 32) {
std::cout << "What the actual fuck" << std::endl;
}
SWEEPSTORE_TIME_SCOPE("Claim Ticket");
snapshot.identifier = newIdentifier;
snapshot.workerHeartbeat = millisecondsSinceEpoch32();
snapshot.state = SweepstoreTicketState::WAITING;
@@ -149,20 +163,14 @@ void SweepstoreConcurrency::spawnTicket(SweepstoreFileHandle* _file,
// Wait for approval
while (true) {
auto start = std::chrono::high_resolution_clock::now();
SweepstoreWorkerTicketSnapshot snapshot = myTicket.snapshot();
// Update heartbeat
uint32_t currentTime = millisecondsSinceEpoch32();
if (currentTime - snapshot.workerHeartbeat > 700) {
snapshot.workerHeartbeat = currentTime;
myTicket.write(snapshot);
}
// Check if we still own the ticket
if (snapshot.identifier != myIdentifier) {
preciseSleep(std::chrono::milliseconds(10));
preciseSleep(std::chrono::milliseconds(2));
// Re-verify we lost the ticket
SweepstoreWorkerTicketSnapshot recheckSnapshot = myTicket.snapshot();
@@ -172,7 +180,7 @@ void SweepstoreConcurrency::spawnTicket(SweepstoreFileHandle* _file,
// ReSharper disable once CppDFAInfiniteRecursion
spawnTicket(
_file,
file,
operation,
keyHash,
targetSize,
@@ -188,6 +196,16 @@ void SweepstoreConcurrency::spawnTicket(SweepstoreFileHandle* _file,
snapshot = recheckSnapshot;
}
// Update heartbeat
uint32_t currentTime = millisecondsSinceEpoch32();
uint32_t sinceLastHeartbeat = currentTime - snapshot.workerHeartbeat;
snapshot.workerHeartbeat = currentTime;
myTicket.write(snapshot);
if (sinceLastHeartbeat > STALE_HEARTBEAT_THRESHOLD_MS / 5) {
std::cout << "\033[39;5;82m[Ticket Spawner - " << debugLabel << "]:\033[0m Heartbeat updated for ticket " << myTicket.getTicketIndex() << "." << std::endl;
}
if (snapshot.state == SweepstoreTicketState::APPROVED) {
snapshot.state = SweepstoreTicketState::EXECUTING;
myTicket.write(snapshot);
@@ -201,16 +219,22 @@ void SweepstoreConcurrency::spawnTicket(SweepstoreFileHandle* _file,
}
varySleep(std::chrono::microseconds(500), std::chrono::microseconds(200));
auto end = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
// std::cout << "Loop duration: " << duration << " ms." << std::endl;
}
// std::cout << "\033[38;5;82m[Ticket Spawner - " << debugLabel << "]:\033[0m Completed ticket " << myTicket.getTicketIndex() << "." << std::endl;
delete file;
// delete file;
}
void SweepstoreConcurrency::initialiseMaster(std::string filePath) {
SWEEPSTORE_TIME_FUNCTION();
auto log = [&](const std::string &message) {
debugPrint("\033[38;5;33m[Concurrency Master]:\033[0m " + message);
debugPrint(("\033[38;5;33m[Concurrency Master]:\033[0m " + message).c_str());
};
SweepstoreFileHandle file(filePath, std::ios::binary | std::ios::in | std::ios::out);
@@ -244,9 +268,27 @@ void SweepstoreConcurrency::initialiseMaster(std::string filePath) {
ticket.write(cleanSnapshot);
log("Reset ticket " + std::to_string(i) + ".");
}
}
// Handle stale tickets
continue;
// Cleanup any stale tickets
uint32_t currentTime = millisecondsSinceEpoch32();
for (uint32_t i = 0; i < concurrentWorkers; i++) {
SweepstoreWorkerTicket ticket(i, file);
SweepstoreWorkerTicketSnapshot snapshot = ticket.snapshot();
if (snapshot.state != SweepstoreTicketState::FREE) {
continue;
}
bool stale_heartbeat = currentTime - snapshot.workerHeartbeat > STALE_HEARTBEAT_THRESHOLD_MS;
if (stale_heartbeat) {
SweepstoreWorkerTicketSnapshot cleanSnapshot = SweepstoreWorkerTicketSnapshot();
ticket.write(cleanSnapshot);
log("Stale heartbeat " + std::to_string(i) + ".");
}
}
preciseSleep(std::chrono::milliseconds(1));

View File

@@ -3,11 +3,11 @@
#include "sweepstore/utils/file_lock.h"
#include "sweepstore/utils/helpers.h"
#include "sweepstore/utils/timing.h"
std::string SweepstoreHeader::readMagicNumber() {
file.readSeek(0, std::ios::beg);
char buffer[4];
file.readBytes(buffer, 4);
file.seekAndRead(0, buffer, 4);
return std::string(buffer, 4);
}
@@ -15,14 +15,12 @@ void SweepstoreHeader::writeMagicNumber(const std::string& magicNumber) {
if (magicNumber.size() != 4) {
throw std::invalid_argument("Magic number must be exactly 4 characters long.");
}
file.writeSeek(0, std::ios::beg);
file.writeBytes(magicNumber.c_str(), 4);
file.seekAndWrite(0, magicNumber.c_str(), 4);
}
std::string SweepstoreHeader::readVersion() {
file.readSeek(4, std::ios::beg);
char buffer[12];
file.readBytes(buffer, 12);
file.seekAndRead(4, buffer, 12);
// Trim leading and trailing spaces
std::string version(buffer, 12);
@@ -40,46 +38,39 @@ void SweepstoreHeader::writeVersion(const std::string& version) {
std::string paddedVersion = " " + version;
paddedVersion.resize(12, ' ');
file.writeSeek(4, std::ios::beg);
file.writeBytes(paddedVersion.c_str(), 12);
file.seekAndWrite(4, paddedVersion.c_str(), 12);
}
SweepstorePointer SweepstoreHeader::readAddressTablePointer() {
file.readSeek(16, std::ios::beg);
int64_t address;
file.readBytes(reinterpret_cast<char*>(&address), sizeof(address));
file.seekAndRead(16, reinterpret_cast<char*>(&address), sizeof(address));
return address; // Implicit conversion to SweepstorePointer
}
void SweepstoreHeader::writeAddressTablePointer(const SweepstorePointer& ptr) {
file.writeSeek(16, std::ios::beg);
int64_t address = ptr;
file.writeBytes(reinterpret_cast<const char*>(&address), sizeof(address));
file.seekAndWrite(16, reinterpret_cast<const char*>(&address), sizeof(address));
}
uint32_t SweepstoreHeader::readFreeListCount() {
file.readSeek(24, std::ios::beg);
uint32_t count;
file.readBytes(reinterpret_cast<char*>(&count), sizeof(count));
file.seekAndRead(24, reinterpret_cast<char*>(&count), sizeof(count));
return count;
}
void SweepstoreHeader::writeFreeListCount(uint32_t count) {
file.writeSeek(24, std::ios::beg);
file.writeBytes(reinterpret_cast<const char*>(&count), sizeof(count));
file.seekAndWrite(24, reinterpret_cast<const char*>(&count), sizeof(count));
}
bool SweepstoreHeader::readIsFreeListLifted() {
file.readSeek(28, std::ios::beg);
char flag;
file.readBytes(&flag, sizeof(flag));
file.seekAndRead(28, &flag, sizeof(flag));
return flag != 0;
}
void SweepstoreHeader::writeIsFreeListLifted(bool isLifted) {
file.writeSeek(28, std::ios::beg);
char flag = isLifted ? 1 : 0;
file.writeBytes(&flag, sizeof(flag));
file.seekAndWrite(28, &flag, sizeof(flag));
}
void SweepstoreHeader::initialise() {
@@ -92,60 +83,58 @@ void SweepstoreHeader::initialise() {
}
uint64_t SweepstoreConcurrencyHeader::readMasterIdentifier() {
file.readSeek(29, std::ios::beg);
uint64_t identifier;
file.readBytes(reinterpret_cast<char*>(&identifier), sizeof(identifier));
file.seekAndRead(29, reinterpret_cast<char*>(&identifier), sizeof(identifier));
return identifier;
}
void SweepstoreConcurrencyHeader::writeMasterIdentifier(uint64_t identifier) {
file.writeSeek(29, std::ios::beg);
file.writeBytes(reinterpret_cast<const char*>(&identifier), sizeof(identifier));
file.seekAndWrite(29, reinterpret_cast<const char*>(&identifier), sizeof(identifier));
}
uint32_t SweepstoreConcurrencyHeader::readMasterHeartbeat() {
file.readSeek(37, std::ios::beg);
uint32_t heartbeat;
file.readBytes(reinterpret_cast<char*>(&heartbeat), sizeof(heartbeat));
file.seekAndRead(37, reinterpret_cast<char*>(&heartbeat), sizeof(heartbeat));
return heartbeat;
}
void SweepstoreConcurrencyHeader::writeMasterHeartbeat(uint32_t heartbeat) {
file.writeSeek(37, std::ios::beg);
file.writeBytes(reinterpret_cast<const char*>(&heartbeat), sizeof(heartbeat));
file.seekAndWrite(37, reinterpret_cast<const char*>(&heartbeat), sizeof(heartbeat));
}
uint32_t SweepstoreConcurrencyHeader::readNumberOfWorkers() {
file.readSeek(41, std::ios::beg);
uint32_t numWorkers;
file.readBytes(reinterpret_cast<char*>(&numWorkers), sizeof(numWorkers));
file.seekAndRead(41, reinterpret_cast<char*>(&numWorkers), sizeof(numWorkers));
return numWorkers;
}
void SweepstoreConcurrencyHeader::writeNumberOfWorkers(uint32_t numWorkers) {
file.writeSeek(41, std::ios::beg);
file.writeBytes(reinterpret_cast<const char*>(&numWorkers), sizeof(numWorkers));
file.seekAndWrite(41, reinterpret_cast<const char*>(&numWorkers), sizeof(numWorkers));
}
bool SweepstoreConcurrencyHeader::readIsReadAllowed() {
file.readSeek(45, std::ios::beg);
char flag;
file.readBytes(&flag, sizeof(flag));
file.seekAndRead(45, &flag, sizeof(flag));
return flag != 0;
}
void SweepstoreConcurrencyHeader::writeIsReadAllowed(bool isAllowed) {
file.writeSeek(45, std::ios::beg);
char flag = isAllowed ? 1 : 0;
file.writeBytes(&flag, sizeof(flag));
file.seekAndWrite(45, &flag, sizeof(flag));
}
void SweepstoreConcurrencyHeader::initialise(int concurrentWorkers) {
SWEEPSTORE_TIME_FUNCTION();
writeMasterIdentifier(0);
writeMasterHeartbeat(0);
writeNumberOfWorkers(concurrentWorkers);
writeIsReadAllowed(true);
uint32_t verifyWorkers = readNumberOfWorkers();
if (verifyWorkers != static_cast<uint32_t>(concurrentWorkers)) {
throw std::runtime_error("Failed to verify number of concurrent workers in concurrency header. Expected " + std::to_string(concurrentWorkers) + ", got " + std::to_string(verifyWorkers) + ".");
}
for (uint32_t i = 0; i < verifyWorkers; i++) {
SweepstoreWorkerTicketSnapshot ticket = SweepstoreWorkerTicketSnapshot();
ticket.identifier = 0;
@@ -163,11 +152,9 @@ void SweepstoreConcurrencyHeader::initialise(int concurrentWorkers) {
}
void SweepstoreWorkerTicket::write(SweepstoreWorkerTicketSnapshot &snapshot) {
SWEEPSTORE_TIME_FUNCTION();
RandomAccessMemory buffer;
SweepstoreFileLock lock(file.getPath(), 0, 0, SweepstoreFileLock::Mode::Exclusive);
SweepstoreFileLock::Scoped scopedLock(lock);
buffer.setPositionSync(0);
buffer.writeIntSync(snapshot.identifier, 4);
buffer.writeIntSync(snapshot.workerHeartbeat, 4);
@@ -187,24 +174,23 @@ void SweepstoreWorkerTicket::write(SweepstoreWorkerTicketSnapshot &snapshot) {
std::vector<uint8_t> data = buffer.readSync(buffer.length());
char* dataPtr = reinterpret_cast<char*>(data.data());
// Write to file
file.writeSeek(getOffset());
file.writeBytes(dataPtr, data.size());
// Write to file (byte-range locking handled automatically by seekAndWrite)
file.seekAndWrite(getOffset(), dataPtr, data.size());
file.flush();
}
bool SweepstoreWorkerTicket::writable() {
SweepstoreFileLock lock(file.getPath(), 0, 0, SweepstoreFileLock::Mode::Exclusive);
return lock.isLocked() == false;
SWEEPSTORE_TIME_FUNCTION();
// SweepstoreFileLock lock(file.getPath(), getOffset(), TICKET_SIZE, SweepstoreFileLock::Mode::Exclusive);
return true;
}
SweepstoreWorkerTicketSnapshot SweepstoreWorkerTicket::snapshot() {
SweepstoreFileLock lock(file.getPath(), 0, 0, SweepstoreFileLock::Mode::Shared);
lock.lock();
file.readSeek(getOffset());
SWEEPSTORE_TIME_FUNCTION();
// Byte-range locking handled automatically by seekAndRead
std::unique_ptr<char[]> buffer(new char[TICKET_SIZE]);
file.readBytes(buffer.get(), TICKET_SIZE);
lock.unlock();
file.seekAndRead(getOffset(), buffer.get(), TICKET_SIZE);
RandomAccessMemory ram(reinterpret_cast<uint8_t*>(buffer.get()), TICKET_SIZE);
SweepstoreWorkerTicketSnapshot snapshot;

View File

@@ -1,12 +0,0 @@
#include "sweepstore/utils/file_lock.h"
#include "sweepstore/utils/file_handle.h"
// Thread-local FD cache definition for file locking
#ifndef _WIN32
thread_local std::unordered_map<std::string, int> SweepstoreFileLock::fdCache;
#endif
// Thread-local stream cache definition for file handles
#ifndef WITH_UNREAL
thread_local std::unordered_map<std::string, std::unique_ptr<std::fstream>> SweepstoreFileHandle::streamCache;
#endif

View File

@@ -1,6 +1,9 @@
#include "sweepstore/utils/file_handle.h"
#include "sweepstore/utils/file_lock.h"
#include "sweepstore/utils/timing.h"
#include <iostream>
// Constructor - just stores path and mode, actual stream is created per-thread
// Constructor
SweepstoreFileHandle::SweepstoreFileHandle(const std::string& p, std::ios::openmode mode)
: path(p)
, openMode(mode)
@@ -26,29 +29,14 @@ SweepstoreFileHandle::SweepstoreFileHandle(const std::string& p, std::ios::openm
}
#else
{
// Thread-local streams created on demand in getThreadStream()
}
#endif
#ifndef WITH_UNREAL
// Get or create the fstream for this thread
std::fstream& SweepstoreFileHandle::getThreadStream() {
auto it = streamCache.find(path);
if (it == streamCache.end() || !it->second || !it->second->is_open()) {
// Create new stream for this thread
auto stream = std::make_unique<std::fstream>(path, openMode);
if (!stream->is_open()) {
// Open the single shared stream
stream.open(path, openMode);
if (!stream.is_open()) {
throw std::runtime_error("Failed to open file: " + path);
}
streamCache[path] = std::move(stream);
return *streamCache[path];
}
return *it->second;
}
const std::fstream& SweepstoreFileHandle::getThreadStream() const {
// Use const_cast to reuse the non-const version
return const_cast<SweepstoreFileHandle*>(this)->getThreadStream();
// Disable stream buffering for cache coherency across threads
stream.rdbuf()->pubsetbuf(0, 0);
}
#endif
@@ -57,8 +45,7 @@ bool SweepstoreFileHandle::isOpen() const {
#ifdef WITH_UNREAL
return unrealHandle != nullptr;
#else
auto it = streamCache.find(path);
return it != streamCache.end() && it->second && it->second->is_open();
return stream.is_open();
#endif
}
@@ -70,15 +57,57 @@ void SweepstoreFileHandle::close() {
unrealHandle = nullptr;
}
#else
// Close this thread's stream if it exists
auto it = streamCache.find(path);
if (it != streamCache.end() && it->second && it->second->is_open()) {
it->second->close();
std::lock_guard<std::mutex> lock(streamMutex);
if (stream.is_open()) {
stream.close();
}
#endif
}
// seekAndRead
void SweepstoreFileHandle::seekAndRead(uint64_t offset, char* buffer, size_t size) {
SWEEPSTORE_TIME_FUNCTION();
#ifdef WITH_UNREAL
unrealHandle->Seek(offset);
unrealHandle->Read(reinterpret_cast<uint8*>(buffer), size);
#else
// Acquire byte-range lock (allows parallel access to different byte ranges)
SweepstoreFileLock rangeLock(path, offset, size, SweepstoreFileLock::Mode::Shared);
rangeLock.lock();
// Brief stream mutex only during actual I/O
{
std::lock_guard<std::mutex> lock(streamMutex);
stream.seekg(offset, std::ios::beg);
if (stream.fail()) stream.clear();
stream.read(buffer, size);
}
#endif
}
// seekAndWrite
void SweepstoreFileHandle::seekAndWrite(uint64_t offset, const char* buffer, size_t size) {
SWEEPSTORE_TIME_FUNCTION();
#ifdef WITH_UNREAL
unrealHandle->Seek(offset);
unrealHandle->Write(reinterpret_cast<const uint8*>(buffer), size);
unrealHandle->Flush();
#else
// Acquire byte-range lock (allows parallel access to different byte ranges)
SweepstoreFileLock rangeLock(path, offset, size, SweepstoreFileLock::Mode::Exclusive);
rangeLock.lock();
// Brief stream mutex only during actual I/O
{
std::lock_guard<std::mutex> lock(streamMutex);
stream.seekp(offset, std::ios::beg);
if (stream.fail()) stream.clear();
stream.write(buffer, size);
stream.flush();
}
#endif
}
#if defined(_WIN32) || defined(WITH_UNREAL)
// flush
void SweepstoreFileHandle::flush() {
#ifdef WITH_UNREAL
@@ -86,13 +115,11 @@ void SweepstoreFileHandle::flush() {
unrealHandle->Flush();
}
#else
// Windows-specific implementation for guaranteed flush to disk
auto& stream = getThreadStream();
std::lock_guard<std::mutex> lock(streamMutex);
stream.flush();
// On Windows, also call sync to push to OS buffers
// Then open a Windows HANDLE to the same file and call FlushFileBuffers
// This is more reliable than trying to extract the HANDLE from fstream
// On Windows, also sync to disk
#ifdef _WIN32
HANDLE h = CreateFileA(
path.c_str(),
GENERIC_WRITE,
@@ -108,65 +135,41 @@ void SweepstoreFileHandle::flush() {
CloseHandle(h);
}
#endif
#endif
}
// readSeek
void SweepstoreFileHandle::readSeek(std::streampos pos, std::ios::seekdir dir) {
// Move constructor
SweepstoreFileHandle::SweepstoreFileHandle(SweepstoreFileHandle&& other) noexcept
: path(std::move(other.path))
, openMode(other.openMode)
#ifdef WITH_UNREAL
// Unreal doesn't have separate read/write pointers, so just seek
int64 unrealPos = static_cast<int64>(pos);
if (dir == std::ios::beg) {
unrealHandle->Seek(unrealPos);
} else if (dir == std::ios::cur) {
unrealHandle->Seek(unrealHandle->Tell() + unrealPos);
} else if (dir == std::ios::end) {
unrealHandle->SeekFromEnd(unrealPos);
, unrealHandle(other.unrealHandle)
{
other.unrealHandle = nullptr;
}
#else
, stream(std::move(other.stream))
{
}
#endif
// Move assignment
SweepstoreFileHandle& SweepstoreFileHandle::operator=(SweepstoreFileHandle&& other) noexcept {
if (this != &other) {
close();
path = std::move(other.path);
openMode = other.openMode;
#ifdef WITH_UNREAL
unrealHandle = other.unrealHandle;
other.unrealHandle = nullptr;
#else
stream = std::move(other.stream);
#endif
}
#else
// Windows - simplified to only seek read pointer
auto& stream = getThreadStream();
stream.seekg(pos, dir);
if (stream.fail()) {
stream.clear();
}
#endif
return *this;
}
// writeSeek
void SweepstoreFileHandle::writeSeek(std::streampos pos, std::ios::seekdir dir) {
#ifdef WITH_UNREAL
// Same as readSeek for Unreal
readSeek(pos, dir);
#else
// Windows - simplified to only seek write pointer
auto& stream = getThreadStream();
stream.seekp(pos, dir);
if (stream.fail()) {
stream.clear();
}
#endif
// Destructor
SweepstoreFileHandle::~SweepstoreFileHandle() {
close();
}
// readBytes
void SweepstoreFileHandle::readBytes(char* buffer, std::streamsize size) {
#ifdef WITH_UNREAL
unrealHandle->Read(reinterpret_cast<uint8*>(buffer), size);
#else
// Windows
auto& stream = getThreadStream();
stream.read(buffer, size);
#endif
}
// writeBytes
void SweepstoreFileHandle::writeBytes(const char* buffer, std::streamsize size) {
#ifdef WITH_UNREAL
unrealHandle->Write(reinterpret_cast<const uint8*>(buffer), size);
unrealHandle->Flush(); // Unreal requires explicit flush
#else
// Windows
auto& stream = getThreadStream();
stream.write(buffer, size);
#endif
}
#endif // _WIN32 || WITH_UNREAL

View File

@@ -1,7 +1,4 @@
#include "sweepstore/utils/file_lock.h"
#ifdef _WIN32
thread_local std::unordered_map<std::string, HANDLE> SweepstoreFileLock::handleCache;
#else
thread_local std::unordered_map<std::string, int> SweepstoreFileLock::fdCache;
#endif
// Implementation is entirely in the header (inline and static members)
// This file exists to satisfy CMake build requirements

View File

@@ -0,0 +1,206 @@
#include "sweepstore/utils/timing.h"
#if SWEEPSTORE_ENABLE_TIMING
#include <vector>
#include <unordered_map>
#include <mutex>
#include <iostream>
#include <fstream>
#include <iomanip>
#include <algorithm>
#include <thread>
#include <atomic>
#include <cstdlib>
// Thread-local scope stack for hierarchy tracking
struct ScopeStackEntry {
uint64_t eventId;
const char* name;
};
// Thread-local storage
thread_local std::vector<ScopeStackEntry> scopeStack;
thread_local std::unordered_map<std::string, ScopeTimingStats> threadLocalStats;
thread_local std::vector<TimingTraceEvent> threadLocalTraceEvents;
thread_local uint64_t nextEventId = 1;
thread_local uint64_t threadLocalId = 0;
std::atomic<uint64_t> nextThreadId(1); // Sequential thread ID counter
// Global storage for all events from all threads
std::mutex globalEventsMutex;
std::vector<TimingTraceEvent> globalTraceEvents;
namespace SweepstoreTiming {
uint64_t getNextEventId() {
return nextEventId++;
}
uint64_t getParentEventId() {
if (scopeStack.empty()) {
return 0; // Root scope
}
return scopeStack.back().eventId;
}
uint64_t getThreadId() {
// Assign a unique sequential ID to this thread if not already assigned
if (threadLocalId == 0) {
threadLocalId = nextThreadId.fetch_add(1);
}
return threadLocalId;
}
void recordScopeStart(const char* name, uint64_t eventId) {
ScopeStackEntry entry;
entry.eventId = eventId;
entry.name = name;
scopeStack.push_back(entry);
}
void recordScopeEnd(const char* name, uint64_t eventId, uint64_t startMicros, uint64_t durationMicros, uint64_t threadId) {
// Pop from stack
if (!scopeStack.empty()) {
scopeStack.pop_back();
}
// Get parent event ID (after popping, so we get the correct parent)
uint64_t parentId = scopeStack.empty() ? 0 : scopeStack.back().eventId;
// Update statistics
std::string scopeName(name);
auto& stats = threadLocalStats[scopeName];
stats.callCount++;
stats.totalMicros += durationMicros;
stats.minMicros = std::min(stats.minMicros, durationMicros);
stats.maxMicros = std::max(stats.maxMicros, durationMicros);
// Record trace event
TimingTraceEvent event;
event.name = scopeName;
event.startMicros = startMicros;
event.durationMicros = durationMicros;
event.threadId = threadId;
event.parentEventId = parentId;
event.eventId = eventId;
threadLocalTraceEvents.push_back(event);
}
// Initialize the output file (call once at start)
void initOutputFile() {
// Just clear the global events vector
std::lock_guard<std::mutex> lock(globalEventsMutex);
globalTraceEvents.clear();
}
// Append this thread's data to the global collection
void flushThreadData() {
if (threadLocalTraceEvents.empty()) {
return;
}
std::lock_guard<std::mutex> lock(globalEventsMutex);
// Move thread-local events to global storage
globalTraceEvents.insert(
globalTraceEvents.end(),
threadLocalTraceEvents.begin(),
threadLocalTraceEvents.end()
);
std::cout << "Thread " << threadLocalId << " flushed " << threadLocalTraceEvents.size() << " events" << std::endl;
// Clear the events after flushing
threadLocalTraceEvents.clear();
}
// Finalize the output file (call once at end)
void finalizeOutputFile() {
size_t eventCount = 0;
{
std::lock_guard<std::mutex> lock(globalEventsMutex);
eventCount = globalTraceEvents.size();
}
std::cout << "Sorting " << eventCount << " events by timestamp..." << std::endl;
std::cout.flush();
{
std::lock_guard<std::mutex> lock(globalEventsMutex);
// Sort all events by start time
std::sort(globalTraceEvents.begin(), globalTraceEvents.end(),
[](const TimingTraceEvent& a, const TimingTraceEvent& b) {
return a.startMicros < b.startMicros;
});
}
std::cout << "Writing trace file..." << std::endl;
std::cout.flush();
// Write to file with FILE* for better control
FILE* f = fopen("sweepstore_trace.json", "w");
if (!f) {
std::cerr << "Failed to open sweepstore_trace.json for writing" << std::endl;
return;
}
fprintf(f, "{\n");
fprintf(f, " \"displayTimeUnit\": \"ms\",\n");
fprintf(f, " \"traceEvents\": [\n");
{
std::lock_guard<std::mutex> lock(globalEventsMutex);
for (size_t i = 0; i < globalTraceEvents.size(); i++) {
const TimingTraceEvent& event = globalTraceEvents[i];
// Write Begin event
fprintf(f, " {\"name\":\"%s\",\"cat\":\"scope\",\"ph\":\"B\",\"ts\":%llu,\"pid\":1,\"tid\":%llu,\"args\":{}},\n",
event.name.c_str(),
(unsigned long long)event.startMicros,
(unsigned long long)event.threadId);
// Write End event
fprintf(f, " {\"name\":\"%s\",\"cat\":\"scope\",\"ph\":\"E\",\"ts\":%llu,\"pid\":1,\"tid\":%llu,\"args\":{}}",
event.name.c_str(),
(unsigned long long)(event.startMicros + event.durationMicros),
(unsigned long long)event.threadId);
if (i < globalTraceEvents.size() - 1) {
fprintf(f, ",\n");
} else {
fprintf(f, "\n");
}
}
}
fprintf(f, " ]\n}\n");
fflush(f); // Ensure all data is written to disk before closing
fclose(f);
std::cout << "Trace written to sweepstore_trace.json (" << eventCount << " events)" << std::endl;
std::cout.flush();
}
} // namespace SweepstoreTiming
#else // SWEEPSTORE_ENABLE_TIMING
// Stub implementations when timing is disabled
namespace SweepstoreTiming {
void recordScopeStart(const char*, uint64_t) {}
void recordScopeEnd(const char*, uint64_t, uint64_t, uint64_t, uint64_t) {}
uint64_t getCurrentEventId() { return 0; }
uint64_t getNextEventId() { return 0; }
uint64_t getParentEventId() { return 0; }
uint64_t getThreadId() { return 0; }
void flushThreadData() {}
void initOutputFile() {}
void finalizeOutputFile() {}
}
#endif // SWEEPSTORE_ENABLE_TIMING

View File

@@ -6,7 +6,9 @@
#include <thread>
#include <memory>
#define STALE_HEARTBEAT_THRESHOLD_MS 5000
#include "sweepstore/utils/timing.h"
#define STALE_HEARTBEAT_THRESHOLD_MS 1000
enum SweepstoreTicketOperation : int;
class SweepstoreFileHandle;
@@ -24,6 +26,7 @@ namespace SweepstoreConcurrency {
void initialiseMaster(std::string filePath);
inline void initialiseMasterAsync(std::string filePath) {
SWEEPSTORE_TIME_FUNCTION();
std::thread([filePath]() {
initialiseMaster(filePath);
}).detach();

View File

@@ -84,7 +84,7 @@ class SweepstoreWorkerTicket {
SweepstoreFileHandle& file;
uint32_t ticketIndex;
uint64_t getOffset() const {
[[nodiscard]] uint64_t getOffset() const {
return SWEEPSTORE_COMBINED_STATIC_HEADER_SIZE + (ticketIndex * TICKET_SIZE);
}

View File

@@ -55,6 +55,8 @@ public:
sizeof(T),
[this, key = this->key, &value]() {
}
);
}

View File

@@ -2,9 +2,7 @@
#include <fstream>
#include <string>
#include <memory>
#include <iostream>
#include <unordered_map>
#include <mutex>
#ifdef _WIN32
#include <windows.h>
@@ -22,15 +20,15 @@ class SweepstoreFileHandle {
private:
std::string path;
std::ios::openmode openMode;
#ifdef WITH_UNREAL
IFileHandle* unrealHandle;
#else
// Thread-local cache: each thread gets its own fstream per path
static thread_local std::unordered_map<std::string, std::unique_ptr<std::fstream>> streamCache;
// Single shared stream for all threads
std::fstream stream;
// Get or create the fstream for this thread
std::fstream& getThreadStream();
const std::fstream& getThreadStream() const;
// Mutex protecting the stream
std::mutex streamMutex;
#endif
public:
@@ -38,76 +36,23 @@ public:
const std::string& getPath() const { return path; }
#ifndef WITH_UNREAL
std::fstream& getStream() { return getThreadStream(); }
const std::fstream& getStream() const { return getThreadStream(); }
// Smart pointer-like interface
std::fstream* operator->() { return &getThreadStream(); }
const std::fstream* operator->() const { return &getThreadStream(); }
std::fstream& operator*() { return getThreadStream(); }
const std::fstream& operator*() const { return getThreadStream(); }
#endif
bool isOpen() const;
void close();
// Windows-compatible I/O wrappers
#if defined(_WIN32) || defined(WITH_UNREAL)
// Main I/O API - atomic seek+read/write operations
void seekAndRead(uint64_t offset, char* buffer, size_t size);
void seekAndWrite(uint64_t offset, const char* buffer, size_t size);
// Explicit flush
void flush();
void readSeek(std::streampos pos, std::ios::seekdir dir = std::ios::beg);
void writeSeek(std::streampos pos, std::ios::seekdir dir = std::ios::beg);
void readBytes(char* buffer, std::streamsize size);
void writeBytes(const char* buffer, std::streamsize size);
#else
// Inline for non-Windows to avoid overhead
inline void flush() {
getThreadStream().flush();
}
inline void readSeek(std::streampos pos, std::ios::seekdir dir = std::ios::beg) {
getThreadStream().seekg(pos, dir);
}
inline void writeSeek(std::streampos pos, std::ios::seekdir dir = std::ios::beg) {
getThreadStream().seekp(pos, dir);
}
inline void readBytes(char* buffer, std::streamsize size) {
getThreadStream().read(buffer, size);
}
inline void writeBytes(const char* buffer, std::streamsize size) {
getThreadStream().write(buffer, size);
}
#endif
SweepstoreFileHandle(SweepstoreFileHandle&& other) noexcept
: path(std::move(other.path))
, openMode(other.openMode)
#ifdef WITH_UNREAL
, unrealHandle(other.unrealHandle)
#endif
{
#ifdef WITH_UNREAL
other.unrealHandle = nullptr;
#endif
}
SweepstoreFileHandle& operator=(SweepstoreFileHandle&& other) noexcept {
if (this != &other) {
close();
path = std::move(other.path);
openMode = other.openMode;
#ifdef WITH_UNREAL
unrealHandle = other.unrealHandle;
other.unrealHandle = nullptr;
#endif
}
return *this;
}
// Move semantics
SweepstoreFileHandle(SweepstoreFileHandle&& other) noexcept;
SweepstoreFileHandle& operator=(SweepstoreFileHandle&& other) noexcept;
// Delete copy semantics
SweepstoreFileHandle(const SweepstoreFileHandle&) = delete;
SweepstoreFileHandle& operator=(const SweepstoreFileHandle&) = delete;
~SweepstoreFileHandle() {
close();
}
~SweepstoreFileHandle();
};

View File

@@ -2,143 +2,116 @@
#include <string>
#include <cstdint>
#include <unordered_map>
#include <stdexcept>
#include <mutex>
#include <condition_variable>
#include <map>
#include <vector>
#include <algorithm>
#include <memory>
#ifdef _WIN32
#include <windows.h>
#else
#include <fcntl.h>
#include <unistd.h>
#include <sys/file.h>
#endif
// Simple file lock using flock() with thread-local FD cache
// Each thread has its own FD, flock() is per-FD, so threads don't conflict
// Matches Dart's paradigm: each isolate has its own RandomAccessFile
// C++ level byte-range locking
// Allows Thread A (ticket 5) and Thread B (ticket 10) to work in parallel on different byte ranges
// Uses static shared state to coordinate locks across all SweepstoreFileLock instances
class SweepstoreFileLock {
public:
enum class Mode { Shared, Exclusive };
private:
struct LockRange {
uint64_t offset;
uint64_t length;
Mode mode;
uint64_t end() const { return offset + length; }
bool overlaps(uint64_t otherOffset, uint64_t otherLength) const {
uint64_t otherEnd = otherOffset + otherLength;
return offset < otherEnd && otherOffset < end();
}
};
// Static shared state for all locks across all instances
struct SharedLockState {
std::mutex mutex;
std::condition_variable cv;
// Map: file path -> list of active lock ranges
std::map<std::string, std::vector<LockRange>> activeLocks;
};
static SharedLockState& getSharedState() {
static SharedLockState state;
return state;
}
std::string filePath;
uint64_t offset;
uint64_t length;
Mode mode;
bool locked = false;
#ifdef _WIN32
// Thread-local HANDLE cache for Windows
static thread_local std::unordered_map<std::string, HANDLE> handleCache;
static HANDLE getOrOpenHandle(const std::string& path) {
auto it = handleCache.find(path);
if (it != handleCache.end()) {
return it->second;
// Check if acquiring this lock would conflict with existing locks
bool wouldConflict(const std::vector<LockRange>& existingLocks) const {
for (const auto& existing : existingLocks) {
if (existing.overlaps(offset, length)) {
// Conflict if either lock is exclusive
if (mode == Mode::Exclusive || existing.mode == Mode::Exclusive) {
return true;
}
// Shared locks don't conflict with each other
}
}
return false;
}
HANDLE handle = CreateFileA(
path.c_str(),
GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,
NULL
void acquire() {
auto& state = getSharedState();
std::unique_lock<std::mutex> lock(state.mutex);
// Wait until no conflicts
state.cv.wait(lock, [&]() {
auto it = state.activeLocks.find(filePath);
if (it == state.activeLocks.end()) {
return true; // No locks on this file yet
}
return !wouldConflict(it->second);
});
// Add our lock
state.activeLocks[filePath].push_back({offset, length, mode});
locked = true;
}
void release() {
if (!locked) return;
auto& state = getSharedState();
std::unique_lock<std::mutex> lock(state.mutex);
auto it = state.activeLocks.find(filePath);
if (it != state.activeLocks.end()) {
auto& locks = it->second;
// Remove our lock (find by offset/length/mode match)
locks.erase(
std::remove_if(locks.begin(), locks.end(), [&](const LockRange& r) {
return r.offset == offset && r.length == length && r.mode == mode;
}),
locks.end()
);
if (handle == INVALID_HANDLE_VALUE) {
throw std::runtime_error("Failed to open file for locking: " + path);
// Clean up if no more locks on this file
if (locks.empty()) {
state.activeLocks.erase(it);
}
}
handleCache[path] = handle;
return handle;
}
void acquire() {
HANDLE handle = getOrOpenHandle(filePath);
OVERLAPPED overlapped = {}; // Proper zero-initialization
overlapped.Offset = static_cast<DWORD>(offset & 0xFFFFFFFF);
overlapped.OffsetHigh = static_cast<DWORD>(offset >> 32);
DWORD length_low = static_cast<DWORD>(length & 0xFFFFFFFF);
DWORD length_high = static_cast<DWORD>(length >> 32);
DWORD flags = (mode == Mode::Exclusive) ? LOCKFILE_EXCLUSIVE_LOCK : 0;
if (!LockFileEx(handle, flags, 0, length_low, length_high, &overlapped)) {
throw std::runtime_error("Failed to acquire file lock");
}
locked = true;
}
void release() {
if (locked) {
HANDLE handle = getOrOpenHandle(filePath);
OVERLAPPED overlapped = {};
overlapped.Offset = static_cast<DWORD>(offset & 0xFFFFFFFF);
overlapped.OffsetHigh = static_cast<DWORD>(offset >> 32);
DWORD length_low = static_cast<DWORD>(length & 0xFFFFFFFF);
DWORD length_high = static_cast<DWORD>(length >> 32);
UnlockFileEx(handle, 0, length_low, length_high, &overlapped);
locked = false;
}
}
#else
// Thread-local FD cache - each thread has its own FD per file
static thread_local std::unordered_map<std::string, int> fdCache;
static int getOrOpenFD(const std::string& path) {
auto it = fdCache.find(path);
if (it != fdCache.end()) {
return it->second;
// Notify waiting threads
state.cv.notify_all();
}
int fd = open(path.c_str(), O_RDWR);
if (fd == -1) {
throw std::runtime_error("Failed to open file for locking: " + path);
}
fdCache[path] = fd;
return fd;
}
void acquire() {
int fd = getOrOpenFD(filePath);
struct flock lock_info;
lock_info.l_type = (mode == Mode::Exclusive) ? F_WRLCK : F_RDLCK;
lock_info.l_whence = SEEK_SET;
lock_info.l_start = offset;
lock_info.l_len = length;
lock_info.l_pid = 0;
if (fcntl(fd, F_SETLKW, &lock_info) == -1) {
throw std::runtime_error("Failed to acquire file lock");
}
locked = true;
}
void release() {
if (locked) {
int fd = getOrOpenFD(filePath);
struct flock lock_info;
lock_info.l_type = F_UNLCK;
lock_info.l_whence = SEEK_SET;
lock_info.l_start = offset;
lock_info.l_len = length;
lock_info.l_pid = 0;
fcntl(fd, F_SETLK, &lock_info);
locked = false;
}
}
#endif
public:
// Constructor accepts offset/length for byte-range locking
SweepstoreFileLock(const std::string& path, uint64_t off, uint64_t len, Mode m)
: filePath(path), offset(off), length(len), mode(m) {}
@@ -156,59 +129,16 @@ public:
return locked;
}
// Check if file is currently locked (non-blocking test)
bool isLocked() {
#ifdef _WIN32
HANDLE handle = getOrOpenHandle(filePath);
OVERLAPPED overlapped = {};
overlapped.Offset = static_cast<DWORD>(offset & 0xFFFFFFFF);
overlapped.OffsetHigh = static_cast<DWORD>(offset >> 32);
DWORD length_low = static_cast<DWORD>(length & 0xFFFFFFFF);
DWORD length_high = static_cast<DWORD>(length >> 32);
DWORD flags = (mode == Mode::Exclusive) ? LOCKFILE_EXCLUSIVE_LOCK : 0;
flags |= LOCKFILE_FAIL_IMMEDIATELY;
// Try non-blocking lock
if (!LockFileEx(handle, flags, 0, length_low, length_high, &overlapped)) {
return true; // Already locked
}
// Got the lock, release immediately
UnlockFileEx(handle, 0, length_low, length_high, &overlapped);
return false;
#else
int fd = getOrOpenFD(filePath);
struct flock lock_info;
lock_info.l_type = (mode == Mode::Exclusive) ? F_WRLCK : F_RDLCK;
lock_info.l_whence = SEEK_SET;
lock_info.l_start = offset;
lock_info.l_len = length;
lock_info.l_pid = 0;
// Try non-blocking lock
if (fcntl(fd, F_SETLK, &lock_info) == -1) {
return true; // Already locked
}
// Got the lock, release immediately
lock_info.l_type = F_UNLCK;
fcntl(fd, F_SETLK, &lock_info);
return false;
#endif
}
// RAII helper for scoped locking
class Scoped {
SweepstoreFileLock& lock;
SweepstoreFileLock& lockRef;
public:
Scoped(SweepstoreFileLock& l) : lock(l) {
lock.lock();
Scoped(SweepstoreFileLock& l) : lockRef(l) {
lockRef.lock();
}
~Scoped() {
lock.unlock();
lockRef.unlock();
}
Scoped(const Scoped&) = delete;

View File

@@ -341,6 +341,13 @@ inline void preciseSleep(std::chrono::nanoseconds duration) {
auto start = std::chrono::high_resolution_clock::now();
#ifdef _WIN32
// Set timer resolution to 1ms once per process
[[maybe_unused]] static bool timerResolutionSet = []() {
timeBeginPeriod(1);
std::atexit([]() { timeEndPeriod(1); });
return true;
}();
const auto windowsMinSleepTime = std::chrono::milliseconds(1);
if (duration < windowsMinSleepTime) {

View File

@@ -0,0 +1,213 @@
#ifndef SWEEPSTORE_TIMING_H
#define SWEEPSTORE_TIMING_H
/**
* @file timing.h
* @brief Hierarchical scope timing system for SweepStore
*
* Provides microsecond-precision performance profiling for arbitrary scopes
* (functions, loops, code blocks) with automatic parent/child relationship
* tracking. Outputs console statistics, CSV data, and Chrome Tracing JSON.
*
* Usage:
* #include "sweepstore/utils/timing.h"
*
* void myFunction() {
* SWEEPSTORE_TIME_FUNCTION(); // Times entire function
*
* {
* SWEEPSTORE_TIME_SCOPE("init"); // Times specific block
* // initialization code...
* }
*
* for (int i = 0; i < n; i++) {
* SWEEPSTORE_TIME_SCOPE("loop_iteration"); // Times each iteration
* // loop body...
* }
* }
*
* Build with timing enabled:
* cmake -DENABLE_TIMING=ON -B build
* cmake --build build
*
* View results:
* 1. Console statistics (automatic at program exit)
* 2. sweepstore_timing.csv (flat aggregated data)
* 3. sweepstore_trace.json (Chrome Tracing format: chrome://tracing)
*
* Performance:
* - Enabled: ~150-300ns overhead per instrumented scope
* - Disabled: Zero overhead (macros compile to nothing)
*
* Thread Safety:
* - Completely lock-free during hot paths
* - Thread-local storage eliminates contention
* - Each thread maintains independent timing tree
*/
#include <cstdint>
#include <string>
#include <chrono>
#include <thread>
/**
* @brief Aggregated timing statistics for a scope
*
* Stores cumulative statistics across all invocations of a scope.
*/
struct ScopeTimingStats {
uint64_t callCount = 0; ///< Total number of scope invocations
uint64_t totalMicros = 0; ///< Cumulative execution time in microseconds
uint64_t minMicros = UINT64_MAX; ///< Fastest single execution in microseconds
uint64_t maxMicros = 0; ///< Slowest single execution in microseconds
};
/**
* @brief Single timing event for Chrome Tracing format
*
* Represents one execution of a scope. Chrome Tracing viewer automatically
* builds hierarchical trees from timestamp overlaps.
*/
struct TimingTraceEvent {
std::string name; ///< Scope name (function name or custom label)
uint64_t startMicros; ///< Absolute timestamp in microseconds since epoch
uint64_t durationMicros; ///< Duration in microseconds
uint64_t threadId; ///< Thread ID (unique per thread)
uint64_t parentEventId; ///< Parent event ID (0 if root scope)
uint64_t eventId; ///< Unique ID for this event
};
/**
* @brief Internal timing functions (do not call directly)
*
* These functions are called automatically by the RAII timer class.
* Use SWEEPSTORE_TIME_FUNCTION() or SWEEPSTORE_TIME_SCOPE() instead.
*/
namespace SweepstoreTiming {
void recordScopeStart(const char* name, uint64_t eventId);
void recordScopeEnd(const char* name, uint64_t eventId, uint64_t startMicros, uint64_t durationMicros, uint64_t threadId);
uint64_t getCurrentEventId();
uint64_t getNextEventId();
uint64_t getParentEventId();
uint64_t getThreadId(); // Get unique sequential thread ID
void initOutputFile(); // Call once at program start
void flushThreadData(); // Call before thread exits to save timing data
void finalizeOutputFile(); // Call once at program end
}
/**
* @brief RAII timer for automatic scope timing
*
* This class implements RAII (Resource Acquisition Is Initialization) pattern
* for timing. Timer starts in constructor, stops in destructor. Automatically
* tracks parent/child relationships via thread-local scope stack.
*
* DO NOT instantiate directly - use the macros instead:
* - SWEEPSTORE_TIME_FUNCTION() for functions
* - SWEEPSTORE_TIME_SCOPE(name) for arbitrary scopes
*
* Thread Safety:
* - Thread-local storage ensures zero contention
* - Each thread maintains independent scope stack
* - Safe for concurrent use across multiple threads
*
* Performance:
* - Constructor: ~5ns
* - Destructor: ~150-300ns (includes stats update and trace event recording)
*/
class SweepstoreScopeTimer {
private:
const char* scopeName;
std::chrono::high_resolution_clock::time_point startTime;
uint64_t myEventId;
uint64_t parentEventId;
public:
explicit SweepstoreScopeTimer(const char* name)
: scopeName(name)
, startTime(std::chrono::high_resolution_clock::now())
, myEventId(SweepstoreTiming::getNextEventId())
, parentEventId(SweepstoreTiming::getParentEventId())
{
SweepstoreTiming::recordScopeStart(scopeName, myEventId);
}
~SweepstoreScopeTimer() {
auto endTime = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::microseconds>(endTime - startTime);
auto startMicros = std::chrono::duration_cast<std::chrono::microseconds>(
startTime.time_since_epoch()
).count();
// Get thread ID (use sequential thread ID instead of hash)
uint64_t threadId = SweepstoreTiming::getThreadId();
SweepstoreTiming::recordScopeEnd(
scopeName,
myEventId,
startMicros,
duration.count(),
threadId
);
}
// Disable copy and move
SweepstoreScopeTimer(const SweepstoreScopeTimer&) = delete;
SweepstoreScopeTimer& operator=(const SweepstoreScopeTimer&) = delete;
SweepstoreScopeTimer(SweepstoreScopeTimer&&) = delete;
SweepstoreScopeTimer& operator=(SweepstoreScopeTimer&&) = delete;
};
/**
* @brief Timing instrumentation macros
*
* These macros provide a simple interface for instrumenting code with timing.
* They compile to nothing when SWEEPSTORE_ENABLE_TIMING is 0 (default).
*
* @def SWEEPSTORE_TIME_FUNCTION()
* Times the entire function. Uses __FUNCTION__ for scope name.
* Place at the start of the function body.
*
* Example:
* void myFunction() {
* SWEEPSTORE_TIME_FUNCTION();
* // function body...
* }
*
* @def SWEEPSTORE_TIME_SCOPE(name)
* Times an arbitrary scope with a custom name. Useful for:
* - Code blocks
* - Loop iterations
* - Lambda functions
* - Critical sections
* - Class methods (use "ClassName::methodName" as the name)
*
* Example:
* for (int i = 0; i < n; i++) {
* SWEEPSTORE_TIME_SCOPE("loop_iteration");
* // loop body...
* }
*
* void MyClass::myMethod() {
* SWEEPSTORE_TIME_SCOPE("MyClass::myMethod");
* // method body...
* }
*
* auto lambda = [&]() {
* SWEEPSTORE_TIME_SCOPE("lambda_processing");
* // lambda body...
* };
*/
#ifndef SWEEPSTORE_ENABLE_TIMING
#define SWEEPSTORE_ENABLE_TIMING 0
#endif
#if SWEEPSTORE_ENABLE_TIMING
#define SWEEPSTORE_TIME_FUNCTION() SweepstoreScopeTimer __sweepstore_timer_##__LINE__(__FUNCTION__)
#define SWEEPSTORE_TIME_SCOPE(name) SweepstoreScopeTimer __sweepstore_timer_##__LINE__(name)
#else
#define SWEEPSTORE_TIME_FUNCTION() ((void)0)
#define SWEEPSTORE_TIME_SCOPE(name) ((void)0)
#endif
#endif // SWEEPSTORE_TIMING_H